EXERCISES

4.1-1. Let the joint p.m.f. of X and Y be defined by (c) Give the marginal p.m.f. of X in the margin.
Xty (d) Give the marginal p.m.f. of Y in the margin.
flxy) = 0 x=12,y=1234 (¢) Are X and Y dependent or independent?
Why or why not?
(a) Find fi(x), the marginal p.m.f. of X. 4.1-4. Select an (even) integer randomly from the set
(b) Find f(y), the marginal p.m.f. of Y. {0,2, 4, 6, 8}. Then select an integer randomly
(¢) Find P(X > V). from the set {0, 1,2, 3,4}. Let X equal the integer
(d) Find P(Y =2X). that is selected from the first set and let ¥ equal
(¢) Find P(X + Y = 3). the sum of the two integers.
(f) Find P(X =3 — V). (a) Show the joint p.m.f. of X and Y on the space
(g) Are X and Y independent or dependent? of X and Y.
Why or why not? (b) Compute the marginal p.m.f.’s.

4.1-2. Roll a pair of four-sided dice, one red and one (¢) Are X and Y independent? Why or why not?
black, each of which has possible outcomes 1, 2,

3, 4 that have equal probabilities. Let X equal ~4.1-5. A particle starts at (0,0) and moves in one-unit

the outcome on the red die, and let Y equal the independent steps with equal probabilities of 1/4
outcome on the black die. in each of the four directions: north, south, east,
and west. Let S equal the east—west position and
(a) On graph paper, show the space of X and Y. T the north—south position after » steps.
(b) Define the joint p.m.f. on the space (similar . )
to Figure 4.1-1). (a) Define the joint p.m.f. of S and T with n = 3.

On a two-dimensional graph, give the prob-

(©) Give the marginal p.m.. of X in the margin. abilities of the joint p.m.f. and the marginal

(d) Give the marginal p.m.f. of Y in the margin. p.m.£.’s (similar to Figure 4.1-1)
(¢) Are X and Y dependent or independent? (b) LetX =S + 3andletY = T + 3. How are

s Why or why nOt? ‘ X and Y distributed?
3. Roll a pair of four-sided dice, one red and one .
black, Let X equal the outcome on the red die and ~ 4.1-6. The torque required to remove bolts in a steel

let Y equal the sum of the two dice. plate is rated as very high, high, average, and
) low, and these occur about 30%, 40%, 20%, and

(@) On graph paper, describe the space of X 10% of the time, respectively. Suppose n = 25
and Y. bolts are rated; what is the probability of rating 7

(b) Define the joint p.m.f. on the space (similar very high, 8 high, 6 average, and 4 low? Assume

to Figure 4.1-1). independence of the 25 trials.
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Two construction companies make bids of X and
— Y (in $100,000’s) on a remodeling project. The
joint p.d.f. of X and Y is uniform on the space
N < x<252<y< 7.3.1f X and Y are within
0.1 of each other, the companies will be asked to
rebid; otherwise the low bidder will be awarded
the contract. What is the probability that they will

In a smoking survey among boys between the ages
of 12 and 17, 78% prefer 10 date nonsmokers, 1%
prefer to date smokers, and 21% don’t care. Sup-
pose seven such boys are selected randomly. Let
X equal the number who prefer to date nonsmok-
ers and Y equal the number who prefer to date
smokers.

(a) Determine the joint p.m.f. of X and Y. Be
sure to include the support of the p.m.f.

(b) Find the marginal p.m.f. of X. Again include
the support.

4.1-9. A manufactured item is classified as good, a “‘sec-
ond,” or defective with probabilities 6/10,3/10,and
1/10, respectively. Fifteen such items are selected
at random from the production line. Let X denote
the number of good items, Y the number ol sec-
onds. and 15 — X — Y the number of defective
items.

(a)
(b)

Give the joint p.m.f. of X and Y, f(x, y):
Sketch the set of points for which f(x, y) > 0.
From the shape of this region, can X and Y
be independent? Why or why not?

Find P(X =10, Y = 4).
Give the marginal p.m.f. of X.
Find P(X = 11).

(©
(d
(e)

4.1-10. Letf(x,y) = 3/2,)62 =y=10=x= 1, be the
joint p.d.f. of Xand Y.

(a) Find P(0 = X = 1/2).

(b) Find Pj2=Y = 1).

(¢) Find P(1/2 = Xx=1.1/2=Y=1)
(d) Find P(X = 1/2,Y = 1/2).

(¢) AreXand Y independent? Why or why not?
tj‘r_l_Ll_b Let [(x,y) = Jp XY P=x =Yy <0 be the
Cenhoworjoint p.d.f. of X and Y. Find fi(x yand fa(y)s the

marginal p.d.f’s of X and Y, respectively. Are X

and Y independent?

4.1-12. Let X and Y have the joint p.df. f(x, y)y=x-+y
o=x=1,0=y=L

(a) Findthe marginal p.d.f’s fi(x) and f2(y) and
show that f(x, ) séfl(x)fz(y).Thus,Xand
Y are dependent.

____(b) Compute (i) g (id) pys (iid) 02;and (iv) o3
GIB) Letf(x y) = (3/16)02,0=x=20=Y =2,be
(o0 woss the joint p.d.f. of X and Y. Find fi(x) and f2(y),
the marginal probability density functions. Are
the two random variables independent? Why or
why not?

Let Ty and T, be random times for a compaiy
to complete two steps in a certain process. Say
Ty and T, are measured in days and they have
the joint p.d.f. that is uniform over the space
1<y <10,2 < <6, +2m< 14. What
sP(Ty + To > 10)?

@1?)) Letf(x,y) =4/3, 0<x< 1, 83 <y < 1,zero

(oniovous €lsewhere.

4.1-14.

(a) Sketch the region where f (x,y) > 0.
(b) Find P(X > Y).



EXERCISES

4.2-1. Let the random variables X and Y have the joint

4.

p.m.f

Xty
32

f(x, 1,2,3,4.

, x=1,2,y=

T~‘inc] the means uy and py, the variances o and
v» and the correlation coefficient p. Are X and
Y independent or dependent?

2 Let X and Y have the joint p.m.f. defined by

£(0,0) = £(1,2) = 02,7(0,1) = £(1,1) = 0.3.

4.2-3.

(a) Depict the points and corresponding proba-
bilities on a graph.

(b) Give the marginal p.m.f.’s in the “margins.”

(c) Compute uy, uy, 0%, 0%, Cov(X, Y), and p.

(d) Find the equation of the least squares regres-
sion line and draw it on your graph. Does
the line make sense to you intuitively?

Roll a fair four-sided die twice. Let X equal the
outcome on the first roll and let Y equal the sum
of the two rolls.
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(a) Display the joint p.m.f.ona graph along with
the marginal probabilities.

(b) Determine phy, v o%(, o‘%,,

Cov(X, Y), and
p.

(¢) Findthe equation of the least squares regres-
sion line and draw it on your graph. Does
the line make sense to you intuitively?

4.2-4. Show that, in the bivariate situation, E is a linear

or distributive operator. That is, show that
E[a1u1(X1, Xp) + arup (X1, X)]
— g E[un (X1, X2)] + aE[ua(X1, X2))

42-5. Let X and Y be random variables with respec-

tive means wy and py, respective variances oy
and o2, and correlation coefficient p. Fit the line

— g + bx by the method of least squares
to the probability distribution by minimizing the
expectation

K(a,b) = E[(Y —a — bX )%

with respect to a and b. HINT: Set 9K/8a = 0

and 0K/ab = 0, and solve simultaneously.

4.2-6. Let X and Y have a {rinomial distribution with

parameters n = 3,p1 = 1/6,and py = 1/2. Find

(a) E(X).

(b) E(Y).

(c) Var(X).

(d) Var(Y).

(e) Cov(X, Y).

) p

Note that p = —J,'?”J?_/(l — p)(1 = p2) in
this case. (Indeed, the formula holds in general
for the trinomial distribution; see Example 4.3-3.)

42-7. Let the joint p.m.f. of X and Y be

flx,y) =1/4,
(x,y)ES= {(0,0),(1,1),(1,-1),(2,0)}-

(a) Are XandY independent?

(b) Calculate Cov( X, Y) and p.

This exercise also illustrates the fact that depen-
dent random variables can have a correlation
coefficient of zero.

4.2-8. The joint p.m.f. of X and Y is f(x,y) = 1/6,

0=x +y=2 wherex and y are nonnegative
integers.

(a) Sketchthe support of X and Y.

(b) Record the marginal p.m.£.’s fi (x) and f2(y)
in the “margins.”

(¢) Compute Cov(X, Y).

(d) Determine p, the correlation coefficient.

4.2-9.

4.2-10.

4.2-11.

4.2-12.

(e) Find the best-fitting line and draw it on your
figure.

A certain raw material is classified as to moisture

content X (in percent) and impurity Y (in per-

cent). Let X and Y have the joint p.m.f. given by

I —
2 010 020 030 0.05
1 005 005 015 010

e e S

(a) Find the marginal p.m.f’s, the means, and
the variances.

Find the covariance and the correlation coef-
ficient of X and Y.

If additional heating is needed with high
moisture content and additional filtering
with high impurity such that the additional
cost is given by the function € = 2X + 10Y?
in dollars, find E(C).

Let X and Y be random variables of the continu-
ous type having the joint p.d.f.

f(x,y) =2

Draw a graph that illustrates the domain of this
p.df.

(a)

(b)
(©

(b)
(©)

0=y=x=1

Find the marginal p.d.f’s of X and Y.
Compute px, by, 0%, a2, Cov(X, Y), and p.
Determine the equation of the least squares
regression line and draw it on your graph.
Does the line make sense to you intuitively?
Let X and Y be random variables of the continu-
ous type having the joint p.d.f.

flr,yy=x+5 0<x<1 0<y<kl

Draw a graph that illustrates the domain of this
pdf

(a)

(b)
(©)

Find the marginal p.d.l.’s of X and Y.
Compute puy, [Lys 02\ U'.-: Cov(X, Y). and ps
Determine the equation of the least squares:
regression line and draw it on your grap 1
Does the line make sense Lo you intuitivelyt
Let X and Y be random variables of the contint=
ous type having the joint p.d.f.

f(x,y) = 8y,

Draw a graph that illustrates
pdtl

OSxSySl.

the domain of thi




4.2-13.

(a) Find the marginal p.d.f.’s of X and Y.

(b) Compute wy, gy, crg{, o-%,, Cov(X, Y), and p.

(c) Determine the equation of the least squares
regression line and draw it on your graph.
Does the line make sense to you intu-
itively?

A car dealer sells X cars each day and always tries
to sell an extended warranty on cach of these cars.
(In our opinion, most of these warranties are not
good deals.) Let Y be the number of extended
warranties sold; then Y = X. The joint p.m.f. of
X and Y is given by

flry)=clx + 1)(4 = x)(y + 1)(3 - ),

Section 4.3 Conditional Distributions 797

x =

(a)
(b)
(c)

(d)
(e)
€y
(8)
(h)
(i)

0,1,2,3; y = 0,1,2 with y = x.

Find the value of c.

Sketch the support of X and Y.

Record the marginal p.m.£.’s fi (x) and f£5(y)
in the “margins.”

Are X and Y independent?

Compute uy and 2.

Compute puy and 2.

Compute Cov(X, Y).

Determine p, the correlation coefficient.

Find the best-fitting line and draw it on your
figure.



EXERCISES

4.3-1. Let X and Y have the joint p.m.f.
x +y

flx,y) = ., x=12, y=1234  433.

32

(a) Display the joint p.m.f. and the marginal
p-m.L.’s on a graph like Figure 4.3-1(a).

(b) Find g(x|y) and draw a figure like Figure
4.3-1(b), depicting the conditional p.m.f.’s for
y=1,2,3,and 4.

(c) Find h(y|x) and draw a figure like Figure
4.3-1(c), depicting the conditional p.m.f.’s for
x =1and?2.

() FindP(1=Y=3|X =1),P(Y=2|X =2),
and P(X =2|Y = 3).

(e) Find E(Y|X =1)and Var(Y| X = 1).

432, Let the joint p.m.f. f(x, y) of X and Y be given by
the following:

Find the two conditional probability mass func-
tions and the corresponding means and variances.
Let W equal the weight of laundry soap in
a 1-kilogram box that is distributed in South-
east Asia. Suppose that P(W < 1) = 0.02 and
P(W > 1.072) = 0.08. Call a box of soap light,
good, or heavy, depending on whether {W < 1},
{1=W=1.072},0or {W > 1.072},respectively. In
n = 50 independent observations of these boxes,
let X equal the number of light boxes and Y the
number of good boxes.

(a) Whatis the joint p.m.f. of X and Y?

{b) Give the name of the distribution of Y along
with the values of the parameters of this dis-
tribution.

(c) Given that X = 3, how is Y distributed con-
ditionally?

(d) Determine E(Y | X = 3).

(%,y) flxy) (e) Find p, the correlation coefficient of X and Y.
1,1 3/8 4.3-4. The genes for eye color in a certain male fruit fly
2.1) 1/8 are (R, W). The genes for eye color in the mating
! (1,2) 1/8 female fruit fly are (R, W). Their offspring receive
2,2) 3/8 one gene for eye color from each parent. If an

offspring ends up with either (R, R), (R, W), or
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(W, R), its eyes will look red, Let X equal the 43-9. Let X and Y have a uniform distribution on

number of offspring having red-eyes. Let Y equal the set of points with integer coordinates in
the number of red eyed offspring having (R, W) §={(xy):0=xsTx=y = x + 2}.Thatis,
or (W, R) genes. f(x,y) = 1/24, (x,y) € S, and both x and y are

integers. Find
(a) If the total number of offspring is n = 400, B

how is X distributed? (@) fi(x) |
(b) Give the values of E(X) and Var(X). (o) h(ylx).
(c) Giventhat X = 300, how is Y distributed? (¢) E(Ylx).
(d) Give the values of E(Y|X = 300) and d) o3 x
Var(Y|X = 300). © fy)
43-5. Let X and Y have a {rinomial distribution with  43-10. Let fi(x) = 1/10, x = 0,1,2,...,9, and
n=2 p=1/4andpy =1/2. h(ylx) = 1/(10 = x),y = %x + 1,...,9.Find
(a) Give E(Y|x). (a) flxy).
(b) Compare your answer in part (a) with the ®) L)

equation of the line of best fit in Example Y

42-2. Are they the same? Why or why not? © E(Y1x).

4.3-6. An insurance company sells both homeowners
insurance and automobile deductible insurance.

4.3-11. An automobile repair shop makes an initial esti-
mate X (in thousands of dollars) of the amount
of money needed to fix a car after an accident.

Let X be the deductible on the homeowners

insurance and Y the deductible on automobile Say X has the p.d.t

insurance. Among those who take both types of — 9~ 2x—02) 02 < x <

insurance with this company, we find the follow- f(x) ¢ ’ ' N

ing probabilities: Given that X = x, the final payment ¥ has a uni-
= form distribution between x — 0.1 andx + 0.1

What is the expected value of Y?

R
Y 100 5001000 4.3-12. For the random variables defined in Example 4.3-

LY A e e
1000 0.05 010 015 5, calculate the correlation coefficient directly
500 0.0 020 0.05 from the definition
100 020 010 005
_ Cov(X.,Y)
p=—"">":
’ . — TyTy
(a) Compute the following probabilities:
P(X = 500), P(Y = 500), Letf(x,y) = 1/40,0 = x = 10, 10 —x=y=
P(Y =500|X = 500, 14 — x, be the joint p.d.f. of X and Y.

P(Y = 100 X = 500).

(b) Compute the means juy, by, and the vari- (a) Sketch the region for which f(x,y) > 0.

ANCES T%y Ty (b) Find fi(x), the marginal p.d.f. of X.
(c) Compute the conditional means E(X Y = (©) Delgrnﬁ11c h(y|x), the conditional p.d.f. of
100), E(Y | X = 500). Y, given that X = x.
(d) Compute Cov(X, Y). (d) Calculate E(Y|x), the conditional mean of
|

(¢) Compute the correlation coefficient p = Y, given that X = x.

Cov( X, Y)/oxoy. 43-14. Let f(x,y) = 1/8,0=y = 4ysx=y* 2,be
4.3-7. Using the joint p.m.f. from Exercise 4.2-3, find the joint p.d.f. of X and ¥
tha? value of E(Y_lx_) for x = 1,2‘, 3:4. po the (a) Sketch the region for which f(x,y) > 0.
points |x, E(Y |x)] lie on the best-fitting line? (b) Find fi(x), the marginal p.d.£. of X-

4.3-8. An unbiased six-sided die is cast 3() independent
times. Let X be the aumber of ones and Y the
number of twos. (d)

(¢) Find fo(y), the marginal p.d.f. of Y. :
Determine h(y|x), the conditional p-d-f: of
Y, given that X = x. |
(a) What is the joint p.m.f. of X and Y? (¢) Determine g(x| y), the conditional p.d.f @
(b) Find the conditional p.m.f. of X, given X, giventhat Y = y. k.

Y=y (f) Compute y = E(Y|x), the conditiond
(¢) Compute E(X* — 4XY + 3Y?). mean of Y, given that X = x.



4.3-15,

4.3-18.

Section 4.4

(g) Compute x = E(X|y), the conditional
mean of X, given that Y = y,

(h) Graph y = E(Y|x) on your sketch in part
(a).Isy = E(Y|x) lincar?

(i) Graph x = E(X|y) on your sketch in part
(a). Isx = E(X |y) linear?

Let X have a uniform distribution U(0,2), and

let the conditional distribution of Y, given that

X = x,be U(O,x2).

4.3-20.

The Bivariate Normal Distribution 207

(a) Determine c.
(b) Compute P(Y < X|X = 1/4).

Select x and y to create a triangle of perimeter 1
that has sides of lengths x, y,and 1 — x — y. By
Heron’s formula, the area of such a triangle is

T = %J(zx T2y — D)L = 21 - 2).

If x and y are values of the jointly distributed

(a) Determine f(x,y), the joint p.df. of X random variables X and Y, then 7' is a random
and Y. variable that can be thought of as the area of a

(b) Calculate f5(y), the marginal p.d.f. of Y. “random triangle.”

(¢) Compute E(X|y), the conditional mean of

X, giventhatY = y.

Let X have a uniform distribution on the interval
(0,1). Given that X = x, let Y have a uniform
distribution on the interval (0, x + 1).

(a) Find the joint p.d.f. of X and Y. Sketch the
region where f(x,y) > 0.

(b) Find E(Y |x), the conditional mean of Y,
given that X = x. Draw this line on the
region sketched in part (a).

(¢) Find f,(y), the marginal p.d.f. of Y. Be sure

(a) Determine the possible values of (X, Y)
and graph this region in the xy-plane. Call

(d) Find E(Y |x), the conditional mean of Y, the rogion R
EINEMIAIEN =% (b) Selectgthe rz;ndom oint (X, Y) uniforml
4.3-16. Let X have a uniform distribution on the interval from R. That is. th el}oint p d’f of (X, Y) i}s,
0, 1). Gi that X = x,let Y h if ' ’ e el
Gisrbution on the ntervdl (0,7 7o S LIAGRD: whcre (Rl fhosares
A of R. Show that E(T) = #/105 and the
(a) Define the conditional p.d.f. of Y, given that variance of T is
X = x. Be sure to include the domain,. 2 5 5
(b) Find E(Y |x). E(T") — [E(T)]” = 1/960 — (w/105)".
E:i)) Eetder;nine théjoint g ‘fd‘f'fO;X and Y. Hint: Use Maple or some other computer
) ind the marginal p.d.f. of Y. algebra system.
@1@The marginal distribution of X is U(0,1). The (c) Find the marginal p.d.f. of X and the condi-
.cnnchtmn.al distribution of Y, given that X = x, tional p.d.f. of Y, given that X = x.
is U(0, ¢*). (d) Simulate 5000 pairs of observations of X and
(a) Determine 4(y|x), the conditional p.d.f. of Y and then calculate the areas of the simu-
Y, given that X = x. lated triangles. Show that the sample mean
Find E(Y | x). and the sample variance of the areas of th‘ese
EE)) DliI;pla; thléxj)oint p.df. of X and Y. Sketch 5000 triangles are close to the theoretical
4 . ' values.
th h > 0.
(d) Fiiéj‘fl(c;; ‘Zh:rlflafr(gi,n); 2 ST, (e) Now select (X, Y) as follows: The random

variable X is selected randomly. That is,
fi(x) = ¢, where c is selected appropriately.
Be sure to define the domain for this p.d.f.
Given that X = x, Y is selected randomly
(uniformly) from the appropriate interval.
Define the joint p.d.f. of X and Y [the domain
is R from part (a)], and again find £(T) and
the variance of T. Compare the theoretical
and the sample values.

to include the domain.

Let X and Y have the joint p.d.f. f(x,y) =
ax(l - y),0 <y<land0 <x <1 — y.

Remark This exercise is based on research at Hope Col-
lege by students Andrea Douglass, Courtney Fitzgerald,
and Scott Mihalik. (See references.) ]

43-19,
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Thus, in the bivariate normal case, p = 0 does imply independence of X and Y. I|
Note that these characteristics of the bivariate normal distribution can be extended
to the trivariate normal distribution or, more generally,
distribution. This is done in more advanced texts
matrices [e.g., Hogg, McKean, and Craig (2005)]. -1

EXERCISES

the multivariate normal
{hat assume some knowledge of

(44-1,) Let X and ¥ have a bivariate normal distribution
with parameters py = 3,y = 10, o% = 25,
o2 =9,and p = 3/5. Compute

(a) P(—5 < X < 5).

Mip-s(b) P(-5 < X < 5|Y =13).
(¢ P(1T<Y < 16).

d P(T<Y < 16| X =2).

4.4-2. Show that the expression in the exponent of
Equation 4.4-2 is equal to the function g(x, ¥)
given in the text.

443 Let X and Y have a bivariate normal distribution
with parameters py = 2.8, iy = 110,0% = 0.16,

(J’% — 100, and p = 0.6. Compute

(a) P(106 <Y < 124).

(b) P(106 < Y < 124|X =32).

Let X and Y have a bivariate normal distribution
with wx = 70, 0% = 100, py = 80, o2 = 169,
and p = 5/13. Find

(a) E(Y|X = 72).
(b) Var(Y[|X = 72).
(c) P(Y =84|X = 72).

(34-5)Let X denote the height in centimeters and Y

"~ the weight in kilograms of male college students.

Assume that X and Y havea bivariate normal dis-
\ribution with parameters jux = 185, o% = 100,
y = 84, o2 = 64,and p = 3/5.

4.4-4.

(a) Determine the conditional distribution of Y,
given that X = 190.

(b) Find P(86.4 < Yy < 9536]X = 190).

For a freshman taking introductory statistics
and majoring in psychology, let X equal the
student’s ACT mathematics score and Y the
student’s ACT verbal score. Assume fhat X
and Y have a bivariate normal distribution with
px = 227, ol = 17.64, py = 227, a2 = 1225,
and p = 0.78.

(a) Find P(18.5 < Y < 25.5).
(b) Find E(Y|x).

(c) Find Var(Y|x).
(d) Find P(18.5 <
(¢) Find P(18.5 < Yy < 2551X

4.4-6.

Yy < 255|X =23).
=25).

(f) For x = 21, 23, and 25, draw a graph of
= z = h(y|x) similar to Figure 4.4-1.

@Fm a pair of gallinules, let X equal the weight
in grams of the male and Y the weight in grams
of the female. Assume that X and Y have a
bivariate normal distribution with px = 415,
o4 = 611, py = 347, 0% = 689, and p = —-0.25.
Find

(a) P(309.2 < Y < 380.6).

(b) E(Y |x).

(c) Var(Y]x).

(@) P(3092 < Y < 380.6| X = 385.1).

Let X and Y have a bivariate normal distribution
with parameters py = 10, 0% = 9, py = 15,
o2 = 16,and p = 0. Find

4.4-8.

(a) P(13.6 <Y < 17.2).
(b) E(Yx).
(c) Var(Y|x). "
(@ P36 <Y < 1721X = 9.1).
4.4-9) Let X and Y havea bivariate normal distribution.
Find two different lines, a(x) and b(x). parallel
to and equidistant from E(Y|x),such that

Pla(x) < Y < b(x)| X =x] = 0.9544

for all real x. Plot a(x), b(x), and E(Y |x) when
Wy = 2,y = —1,ox =3, 0y = S5,and p = 3/6.
In a college health fitness progran, let X denote
the weight in kilograms of a male freshman at
the beginning of the program and Y denote his
weight change during a semester. Assume that &
and Y have a bivariate normal distribution with
py = 1230, 0% = 11025, py = 2.80, 0% = 28%
and p = —0.57. (The lighter students tend 108
gain weight, while the heavier students tend 10
lose weight.) Find

(a) P(280=Y = 5.35).

(b) P(276 =y = 534|X = 82.3). _
For a female freshman in a health fitness P*
gram, let X equal her percentage of body:
at the beginning of the program and Y €4
the change in her percentage of body fat 108
sured at the end of the program. Assume =
X and Y have a bivariate normal distribus

4.4-10.



4.4-12.

4.4-13.

with uy = 24.5, 02 = 4.82 = 23.04, uy = —0.2,
o2 =3.0>=90,and p = —0.32. Find

(a) P(13=Y = 58).

(b) wmyix, the conditional mean of Y, given that
X =x.

(c) U%,lx, the conditional variance of Y, given
that X = x.

(d) P(13 =Y =58|X =18).

For a male freshman in a health fitness pro-
gram, let X equal his percentage of body fat
at the beginning of the program and Y equal
the change in his percentage of body fat mea-
sured at the end of the program. Assume that X
and Y have a bivariate normal distribution with
pux = 1500, 0% = 4.5%, uy = —1.55, 0% = 1.5%,
and p = —0.60. Find

(a) P(0205 = Y = 0.805).
(b) P(021 =Y =0.81|X = 20).

The concentration (X) and the viscosity (Y)
of a chemical product have a bivariate normal
distribution with parameters puy = 3,uy = 2,
ox = 2,0y = 1,and p = 0.6.

(a) What is P(X + Y = 4)? Hint: Find the
moment-generating functionof Z = X + Y
and show that it has a normal distribu-
tion.

(b) Compute the conditional probability
P(X =35]Y =25).

Exercises 213

(¢) Compute
A (5
- @6 (X2 - 2)

+ (Y — 2)2} = 5.99}‘

Hint: Show that the moment-generating
function of the second degree function
q(X,Y) in the probability statement is equal
to (1 — 2t)~ L.

4.4-14. Suppose that in a certain population of cigarettes

the tar (X) per cigarette in milligrams and the
nicotine (Y) have a bivariate normal distribu-
tion with parameters uy = 14.1,0x = 2.5, uy =
1.3,0y = 0.1,and p = 0.8. Compute

(a) P(Y > 14]X = 15),
(b) P(X > 15|Y = 1.4).

4.4-15. An obstetrician does ultrasound examinations on

her patients between their 16th and 25th weeks of
pregnancy to check the growth of each fetus. Let
X equal the widest diameter of the fetal head, and
let Y equal the length of the femur, both mea-
surements in mm. Assume that X and Y have
a bivariate normal distribution with uy = 60.6,
ox =112, uy = 46.8, 0y = 84, and p = 0.94.

(a) Find P(40.5 < Y < 48.9).
(b) Find P(40.5 < Y < 48.9|X = 68.6).



