1.1-9.

1.1-10.

1.1-11.

1.1-12.

puter to perform the simulation; or simply

use the table of random numbers (Table IX

in the appendix), start at a random spot,

and let an integer in the set {0,1} = 1, in

{2,3,4} = 2,in {5,6,7} = 3,in {8,9} = 4.
(c) Plot f(x) and A(x) on the same graph.

Toss two coins at random and count the number
of heads that appear “up.” Here S = {0,1,2}. In
Chapter 2, we discover that a reasonable prob-
ability model is given by the p.m.f. f(0) =
1/4, f(1) = 1/2, f(2) = 1/4. Repeat this experi-
ment atleast # = 100 times, and plot the resulting
relative frequency histogram h(x) on the same
graph with f(x).

Let the random variable X be the number of
tosses of a coin needed to obtain the first head.
Here § = {1,2,3,4,...}. In Chapter 2, we find
that a reasonable probability model is given by
the p.m.f. f(x) = (1/2)%, x € S. Do this experi-
ment a large number of times, and compare the
resulting relative frequency histogram A(x) with

f(x).

In 1985, Al Bumbry of the Baltimore Orioles and
Darrell Brown of the Minnesota Twins had the
following numbers of hits (H) and official at bats
(AB) on grass and artificial turf:

Playing Surface Bumbry Brown
AB H BA AB H BA
Grass 295 77 92 18
Artificial Turf 49 16 168 53
Total 344 93 260 71

(a) Find the batting averages BA (namely,
H/AB) of each player on grass.

(b) Find the BA of each player on artificial turf.

(c) Find the season batting averages for the two
players.

(d) Interpret your results.

In 1985, Kent Hrbek of the Minnesota Twins and
Dion James of the Milwaukee Brewers had the
following numbers of hits (H) and official at bats
(AB) on grass and artificial turf:
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Playing Surface Hrbek James
AB H BA AB H BA
Grass 204 50 329 93
Artificial Turf 355 124 58 21
Total 559 174 387 114

(a) Find the batting averages BA (namely,
H/AB) of each player on grass.

(b) Find the BA of each player on artificial turf.

(c) Find the season batting averages for the two
players.

(d) Interpret your results.

.1-13.3If we had a choice of two airlines, we would pos-

sibly choose the airline with the better “on-time
performance.” So consider Alaska Airlines and
America West, using data reported by Arnold
Barnett (see references):

Alaska America
Airline Airlines West
Relative Relative
Frequency Frequency
Destination on Time on Time
Los Angeles 497 694
559 811
Phoenix 221 4840
233 5255
San Diegd 212 583
232 448
San Francisco @ @
605 449
Seattle 1841 201
2146 262
Five-City Total 3274 6438
3775 7225

. (a) For each of the five cities listed, which airline
has the better on-time performance?

(b) Combining the results, which airline has the
better on-time performance?

(c) Interpret your results.

In Section 1.1, the collection of all possible outcomes (the universal set) of a random
experiment is denoted by S and is called the outcome space. Given an outcome space
S, let A be a part of the collection of outcomes in S; that is, A C S. Then A is
called an event. When the random experiment is performed and the outcome of the
experiment is in A, we say that event A has occurred.
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Since, in studying probability, the words set and event are interchangeable, the
reader might want to review algebra of sets, found in Appendix D on the CD-ROM.
For convenience, however, here we remind the reader of some terminology:

e () denotes the null or empty set;

e A C B means A is a subset of B;

e A U Bis the union of A and B;

e A () Bis the intersection of 4 and B;

e A’ is the complement of A (i.e., all elements in S that are not in A).
Some of these sets are depicted by the shaded region in Figure 1.2-1, in which § is the
interior of the rectangles. Such figures are called Venn diagrams.
S
AuB
S

ANB AuBuUC(C,
FIGURE 1.2-1: Algebra of sets

Special terminology associated with events that is often used by statisticians
includes the following: gopewice

1. Aq, Ap,..., Ax are mutually exclusive events means that A; () A; = O, i # |,
thatis, Ay, Ay, ..., Ay are disjoint sets;
2. Aq, Ay, ..., Ay are exhaustive events means that A; U A, U --- U 4 = S.

Soif Ay, Ay,..., A are mutually exclusive and exhaustive events, we know that
Ai M A=0,i#j,andA; U A2 U -~ U Ag = S.

We are interested in defining what is meant by the probability of event A, denoted
by P(A) and often called the chance of A occurring. To help us understand what
is meant by the probability of A, consider repeating the experiment a number of
times—say, n times. Count the number of times that event A actually occurred
throughout these n performances; this number is called the frequency of event A and
is denoted by A/(A). The ratio N'(A)/n is called the relative frequency of event A




Section 1.2 Properties of Probability 713

in these n repetitions of the experiment. A relative frequency is usually very unstable
for small values of n, but it tends to stabilize as n increases. This suggests that we
associate with event A a number—say, p—that is equal to or approximately equal to
the number about which the relative frequency tends to stabilize. This number p can
then be taken as the number that the relative frequency of event A will be near in
future performances of the experiment. Thus, although we cannot predict the outcome
of a random experiment with certainty, we can, for a large value of n, predict fairly
accurately the relative frequency associated with event A. The number p assigned to
event A is called the probability of event A and is denoted by P(A). Thatis, P(A)
represents the proportion of outcomes of a random experiment that terminate in the
event A as the number of trials of that experiment increases without bound.

The next example will help to illustrate some of the ideas just presented.

A fair six-sided die is rolled six times. If the face numbered k 1s the outcome on roll
k for k = 1,2,...,6, we say that a match has occurred. The experiment is called a
success if at least one match occurs during the six trials. Otherwise, the experiment
s called a failure. The sample space is S = {success, failure}. Let A = {success }.
We would like to assign a value to P(A ). Accordingly, this experiment was simulated
500 times on a computer. Figure 1.2-2 depicts the results of this simulation, and the
following table summarizes a few of the results:

n N(A) N(A)/n

50 37 0.740
100 69 0.690
250 172 0.688
500 330 0.660

The probability of event A is not intuitively obvious, but it will be shown in
Example 1.5-6 that P(A) = 1 — (1 — 1/6)® = 0.665. This assignment is certainly
supported by the simulation (although not proved by it). ]

freq/n
1.0 q
0.9
0.8

o] P

0.6

0.5

041
n

0 © 100 200 300 400 500

FIGURE 1.2-2: Fraction of experiments having at least one match
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Example 1.2-1 shows that at times intuition cannot be used to assign probabilities,
although simulation can perhaps help to assign a probability empirically. The next
example illustrates where intuition can help in assigning a probability to an event.

A disk 2 inches in diameter is thrown at random on a tiled floor, where each tile is a
square with sides 4 inches in length. Let C be the event that the disk will land entirely
on one tile. In order to assign a value to P(C), consider the center of the disk. In
what region must the center lie to ensure that the disk lies entirely on one tile? If you
draw a picture, it should be clear that the center must lie within a square having sides
of length 2 and with its center coincident with the center of a tile. Since the area of
this square is 4 and the area of a tile is 16, it makes sense to let P(C) = 4/16. B

Sometimes the nature of an experiment is such that the probability of A can be
assigned easily. For example, when a state lottery randomly selects a three-digit
integer, we would expect each of the 1000 possible three-digit numbers to have the
same chance of being selected, namely, 1/1000. If we let A = {233,323,332}, then
it makes sense to let P(A) = 3/1000. Or if we let B = {234,243,324,342,423,432},
then we would let P(B) = 6/1000, the probability of the event B. Probabilities of
events associated with many random experiments are perhaps not quite as obvious
and straightforward as was seen in Example 1.2-1.

So we wish to associate with A a number P(A ) about which the relative frequency
N (A)/n of the event A tends to stabilize with large n. A function such as P(A ) thatis
evaluated for a set A is called a set function. In this section, we consider the probability
set function P(A) and discuss some of its properties. In succeeding sections, we shall
describe how the probability set function is defined for particular experiments.

To help decide what properties the probability set function should satisfy, consider
properties possessed by the relative frequency N (A)/n. For example, N (A)/n is
always nonnegative. If A = S, the sample space, then the outcome of the experiment
will always belong to S, and thus N (S)/n = 1. Also, if A and B are two mutually
exclusive events, then N (A U B)/n = N(A)/n + N(B)/n. Hopefully, these
remarks will help to motivate the following definition.

s

DEFINITION ‘7Pi‘055b
1.2-1 sa

The theorems that follow give some other important properties of the probability
set function. When one considers these theorems, it is important to understand the
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theoretical concepts and proofs. However, if the reader keeps the relative frequency
concept in mind, the theorems should also have some intuitive appeal.

THEOREM
1.2-1

Proof. We have
S=A U A and ANA =0
Thus, from properties (b) and (c), it follows that
1=PA) + P(A").
Hence,

P(A) =1 — P(A"). 0

_ EXAMPLE 1.2-3

A fair coin is flipped successively until the same face is observed on successive
flips. Let A = {x:x = 3,4,5,...}; that is, A is the event that it will take three
or more flips of the coin to observe the same face on two consecutive flips. To
find P(A), we first find the probability of A’ = {x: x = 2}, the complement
of A. In two flips of a coin, the possible outcomes are {HH,HT,TH,TT}, and
we assume that each of these four points has the same chance of being observed.
Thus,

P(A') = P({HH,TT}) = %

It follows from Theorem 1.2-1 that

A~

P(A)=1 - PA)=1 -

AN

THEOREM
1.2-2
Proof. In Theorem 1.2-1, take A = @ so that A’ = S. Then
P(O)y=1-PS)=1-1=0. O
THEOREM
1.2-3

Proof. We have
B=AU (BNA) and AN(BNA)=0.
Hence, from property (c),

P(B) = P(A) + P(B N A') = P(A)
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because, from property (a),

P(BMNA)=0. 0
THEOREM
1.2-4
Proof. Since A C S, we have, by Theorem 1.2-3 and property (b),
P(A) = P(S) =1,
which gives the desired result. O
Property (a), along with Theorem 1.2-4, shows that, for each event A,
0=PA)=1. |
THEOREM  If A and B en
125 ieiim

Proof. The event A U B can be represented as a union of mutually exclusive
events, namely,

AUB=A4U (4 N B).
Hence, by property (c),
P(A U B) = P(A) + P(A’ N B). (12-1)

However,

B=(A N B) U (A" N B),
which is a union of mutually exclusive events. Thus,
P(B)=P(A N B) + P(A' N B)

and
P(A" N\ B) =P(B) — P(A N B).

If the right-hand side of this equation is substituted into Equation 1.2-1, we

obtain
P(A U B)=P(A) + P(B) — P(A N B),

which is the desired result. O

_ EXAMPLE 1.2-4 [N faculty leader was meeting two students in Paris, one arriving by train from
Amsterdam and the other arriving by train from Brussels at approximately the same
time. Let A and B be the events that the respective trains are on time. Suppose we
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know from past experience that P(A) = 0.93, P(B) = 0.89,and P(A (1 B) = 0.87.
Then '

P(A U B)=PA) + P(B) — P(A N B)
=0.93 + 0.89 — 0.87 = 0.95

is the probability that at least one train is on time.

THEOREM
1.2-6

Proof. Write

AUBUC=AU (BUC)

and apply Theorem 1.2-5. The details are left as an exercise. O

A survey was taken of a group’s viewing habits of sporting events on TV during the
last year. Let A = {watched football}, B = {watched basketball}, C = {watched
baseball}. The resultsindicate thatif a personisselected from the group surveyed, then
P(A) =043, P(B) = 0.40, P(C) = 0.32, P(A N B) =0.29,P(A N C) = 0.22,
P(B N C) =10.20,and P(A M B M C) = 0.15. It then follows that

P(AUBU C)=P(A) + P(B) + P(C) — P(AN B) - P(ANC)
_P(BNC)+P(AN BN C)
=043 + 040 + 032 — 029 — 022 — 020 + 0.15
= 0.59

is the probability that this person watched at least one of these sports. E

Let a probability set function be defined on a sample space S. Let § =
{e1,e2,...,em}, where each e; is a possible outcome of the experiment. The integer
m is called the total number of ways in which the random experiment can terminate.
If each of these outcomes has the same probability of occurring, we say that the m
outcomes are equally likely. That is,

P({ei}) = ;1’; Q= L,2,...,m.

If the number of outcomes in an event A is &, then the integer # is called the number of
ways that are favorable to the event A. In this case, P(A ) is equal to the number of ways
favorable to the event A divided by the total number of ways in which the experiment
can terminate. That is, under this assumption of equally likely outcomes, we have .
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where 7 = N(A) is the number of ways A can occur and m = N(S) is the number of
ways S can occur. Exercise 1.2-19 considers this assignment of probability in a more
theoretical manner.

It should be emphasized that in order to assign the probability A/m to the
event A, we must assume that each of the outcomes €1,€2,...,6, has the same
probability 1/m. This assumption is then an important part of our probability
model; if it is not realistic in an application, then the probability of the event A
cannot be computed in this way. Actually, we have used this result in the simple
case given in Example 1.2-3 because it seemed realistic to assume that each of
the possible outcomes in § = {HH,HT, TH, TT} had the same chance of being
observed.

Let a card be drawn at random from an ordinary deck of 52 playing cards. Then the
sample space § is the set of m = 52 different cards, and it is reasonable to assume
that each of these cards has the same probability of selection, 1/52. Accordingly, if
A is the set of outcomes that are kings, then P(A) = 4/52 = 1/13 because there
are h = 4 kings in the deck. That is, 1/13 is the probability of drawing a card that
is a king, provided that each of the 52 cards has the same probability of being
drawn. ' H

In Example 1.2-6, the computations are very easy because there is no difficulty in
the determination of the appropriate values of 4 and . However, instead of drawing
only one card, suppose that 13 are taken at random and without replacement. Then
we can think of each possible 13-card hand as being an outcome in a sample space, and
it is reasonable to assume that each of these outcomes has the same probability. For
example, to use the preceding method to assign the probability of a hand consisting
of seven spades and six hearts, we must be able .to count the number /4 of all such
hands, as well as the number m of possible 13-card hands. In these more complicated
situations, we need better methods of determining /2 and m. We discuss some of these
counting techniques in Section 1.3.

EXERCISES

TN

. (\I.Z—Dfo‘f‘ a group of patients hgving injurigs, 28% A = {x:xis ajack, queen, or king},
w\_»:w, visit both a p.h.yswa.l therapist and a chlropra.c- B = {x:xisa9,10,or jack and x is red},

tor and 8% visit neither. Say that the probabil- .

ity of visiting a physical therapist exceeds the €= {xixisaclub},

orobability of visiting a chiropractor by 16%. D = {x:xisadiamond, a heart, or a spade}.

What is the probability of a randomly selected )
serson from this group visiting a physjcal thera- Find (a) P(A), (b) P(A N B), (c) P(A U B),
9 o TS VARSI G ST (d) P(C U D),and () P(C N D).
Dist? 1= 08="P( Uy = additvity A /
. N ' L/ A coin is tossed four times, and the sequence of
1.2-2. An insurance company looks at its auto insufance heads and tails is observed
customers and finds that (a) all insure at least one

car, (b) 85% insure more than one car, (c) 23% (a) List each of the 16 sequences in the sample

PSP =23

insure a sports car, and (d) 17% insure more than
one car, including a sports car. Find the probability
that a customer selected at random insures exactly

,one car and it is not a sports car.

, —— @ Draw one card at random from a standard deck of
. Yaijﬁ\ =%

cards. The sample space § is the collection of the
52 cards. Assume that the probability set function
assigns 1/52 to each of the 52 outcomes. Let

space S.

(b) Let events A, B, C, and D be given
by A = {at least 3 heads}, B = {at
most 2 heads}, C = {heads on the third
toss}, and D = {1 head and 3 tails}.
If the probability set function assigns 1/16
to each outcome in the sample space,
find (i) P(A), (i) P(A N B), (i) P(B),
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. and (vii) P(B N D).
(1.2-5)A field of beans is planted with three seeds
T per hill. For each hill of beans, let A; be the
event that i seeds germinate, i = 0,1,2,3. Sup-
pose that P(Ag) = 1/64, P(A1) = 9/64, and
) P(A;) = 27/64. Give the value of P(A3).
{/@Consider the trial on which a 3 is first observed
S in successive rolls of a six-sided die. Let A be
the event that 3 is observed on the first trial.
Let B be the event that at least two trials are
required to observe a 3. Assuming that each side
has probability 1/6, find (a) P(A), (b) P(B), and
(c) P(A U B). .
1.2-7. A fair eight-sided die is rolled once. Let A =
{2,4,6,8}, B = {3,6}, C = {2,5,7}, and D =
{1,3,5,7}. Assume that each face has the same
probability.

(a) Give the values of (i) P(A), (ii) P(B),
(iii) P(C), and (iv) P(D).

(b) Give the values of (i) P(A M B),
(ii) P(B M C),and (iii) P(C M D).

(¢) Give the values of (i) P(A U B),
(it) P(B U C), and (iii) P(C U D), using
Theorem 1.2-5.

(12-8)1t P(A) = 04, P(B) = 0.5,and P(A N B) =
0.3, find (a) P(A U B), (b) P(A N B'), an
(©P(A" U B'). S b use exnt o\ewm;. nein

1.2-9. Given that P(A U B) = 0.76 and P(A U B') =
0.87, find P(A).

1.2-10. During a visit to a primary care physician’s office,
the probability of having neither lab work nor
referral to a specialist is 0.21. Of those coming
to that office, the probability of having lab work
is 0.41 and the probability of having a referral is
0.53. What is the probability of having both lab

.. work and a referral?
{\\1.2-11.,)1011 a fair six-sided die three times. Let A; =

7 {lor2onthefirstroll}, A; = {3or4onthe
second roll},and A3 = {5 or 6 on the third roll}.
It is given that P(A;) = 1/3, i = 1,2,3;
P(A; N Aj) = (1/3)%,i#j;and P(A; N A2 N

43) = (1/3)*

Use Theorem 1.2-6 to find P(A; U Ay U
As).

(b) Showthat P(A; U A, U A3) =1 — (1 —
1/3)3.

1.2-12. Prove Theorem 1.2-6.

1.2-13. For each positive integer n, let P({n}) = (1/2)".
Consider the events A = {n:1 = n = 10},
B={n:1=n=20},andC = {n:11 =n=20}.
Find (a) P(A), (b) P(B), (c) P(A U B),
(d) P(A N B),(e) P(C),and (f) P(B').

9

Exercises

.2-14.)Let x equal a number that is selected randomly

1.2-15.

from the closed interval from zero to one, [0, 1].
Use your intuition to assign values to

(a) P({x:0=x=1/3}).
(b) P({x:1/3 =x =1}).
(¢) P({x:x=1/3}).

(d)y P({x:1/2 < x < 5}).

A typical roulette wheel used in a casino has
38 slots that are numbered 1,2,3,...,36,0,00,
respectively. The 0 and 00 slots are colored green.
Half of the remaining slots are red and half are
black. Also, half of the integers between 1 and
36 inclusive are odd, half are even, and 0 and 00
are defined to be neither odd nor even. A ball
is rolled around the wheel and ends up in one
of the slots; we assume that each slot has equal
probability of 1/38, and we are interested in the
number of the slot into which the ball falls.

(a) Define the sample space S.
(b) Let A = {0,00}. Give the value of P(A).
(¢) Let B = {14,15,17,18}. Give the value of

P(B).
Let D = {x : xis odd}. Give the value of
P(D).

(d)

The five numbers 1, 2, 3, 4, and 5 are writ-

1.2-17.

1.2-18.

1.2-19.

ten respectively on five disks of the same size
and placed in a hat. Two disks are drawn with-
out replacement from the hat, and the numbers
written on them are observed.

(a) List the 10 possible outcomes of this experi-
ment as unordered pairs of numbers.

(b) If each of the 10 outcomes has probability
1/10, assign a value to the probability that
the sum of the two numbers drawn is (i) 3;
(ii) between 6 and 8 inclusive.

Divide a line segment into two parts by selecting
a point at random. Use your intuition to assign
a probability to the event that the longer seg-
ment is at least two times longer than the shorter
segment.

Let the interval [ -7, 7] be the base of a semicircle.
If a point is selected at random from this interval,
assign a probability to the event that the length
of the perpendicular segment from the point to
the semicircle is less than /2.

Let § = Ay U 4, U -+ U A, where
events Ay, As, ..., A,y are mutually exclusive and
exhaustive.

(a) If P(A1) = P(Ay) = --- = P(An), show

that P(A;) = 1/m, i = 1,2,...,m.
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(b) A=A UAy U - U Ay, whereh <m, a five-year period. The actuary involved makes

and (a) holds, prove that P(A) = h/m. the assumption that p,,+1 = (1/4)p,. What is the

{ (1.220) Let pp, n = 0,1,2,..., be the probability that an probability that the holder will file two or more
automobile pohcyholder will file for n claims in claims during this period?

1.3 METHODS OF ENUMERATION

In this section, we develop counting techniques that are useful in determining the
number of outcomes associated with the events of certain random experiments. We
begin with a consideration of the multiplication principle.

Multiplication Principle: Suppose that an experiment (or procedure) Ej has nq
outcomes and, for each of these possible outcomes, an experiment (procedure) £,
has 1y possible outcomes. Then the composite experiment (procedure) E1E» that
consists of performing first £1 and then E» has nyn; possible outcomes.

Let E; denote the selection of a rat from a cage containing one female (F) rat and
one male (M) rat. Let E; denote the administering of either drug A (A), drug B (B),
or a placebo (P) to the selected rat. Then the outcome for the composite experiment
can be denoted by an ordered pair, such as (F, P). In fact, the set of all possible
outcomes, namely, (2)(3) = 6 of them, can be denoted by the following rectangular
array:

(F,A) (F,B) (F,P)
(M, A) (M,B) (M, P) L

Another way of illustrating the multiplication principle is with a tree diagram like
that in Figure 1.3-1. The diagram shows that there are ny = 2 possibilities (branches)
for the sex of the rat and that, for each of these outcomes, there are ny = 3 possibilities
(branches) for the drug.

FIGURE 1.3-1: Tree diagram

Clearly, the multiplication principle can be extended to a sequence of more
than two experiments or procedures. Suppose that the experiment E; has n; (i =
1,2,...,m) possible outcomes after previous experiments have been performed. Then
the composite experiment EqE; - - - E,, that consists of performing E1, then Ea, ...,
and finally E,, has niny - - - n,, possible outcomes.

A certain food service gives the following choices for dinner: Eq, soup or tomato
juice; E, steak or shrimp; E3, French fried potatoes, mashed potatoes, or a baked




