NAMING BINARY COMPOUNDS IV

Nonmetal-nonmetal binary compounds are named using Greek prefixes to specify the number of atoms of each element in the molecule.

- Rule 1 Give a **prefix** indicating the subscript on the first element, then the first **element name**, then the **prefix** indicating the subscript on the second element, then the second **element name with ''ide'' ending**.
- Rule 2 Use no prefix for a subscript of one (1) except use "mono" in special cases, especially to avoid ambiguity or confusion.

Rule 3 Use common names for water, H₂O, ammonia, NH₃, methane, CH₄, etc.

Also	ethane propane butane	$\begin{array}{c} C_2 H_6 \\ C_3 H_8 \\ C_4 H_{10} \end{array}$	pentane hexane heptane		$\begin{array}{c} C_{5}H_{12} \\ C_{6}H_{14} \\ C_{7}H_{16} \end{array}$	octane nonane decane	$\begin{array}{c} C_8 H_{18} \\ C_9 H_{20} \\ C_{10} H_{22} \end{array}$
The prefixes a	re: 1 2 3 4	mono di tri tetra	penta hexa hepta octa	9 10	nona deca		

Note: The "a" in a prefix before "oxide" may be dropped.

Examples: CO₂ is named **carbon dioxide**. N₂O is named **dinitrogen oxide** or **dinitrogen monoxide** N₂O₅ is named **dinitrogen pentoxide** or **dinitrogen pentaoxide**

You should be able to name the following compounds:

a. NF ₃	i. P ₄ O ₁₀
b. CCl ₄	j. IF ₇
c. OF ₂	k. SF ₆
d. TeO ₃	1. P_4S_7
e. As ₄ Se ₄	m. B ₂ O ₃
f. ClF	n. PCl ₅
g. C ₃ H ₈	o. I ₄ O ₉
h. S_3Br_2	p. Si ₂ I ₆

Names are on the other side.

WRITING BINARY FORMULAS IV

Rule 1 Write the **symbol** for the first element then its numerical **subscript**, write the **symbol** for the second element then its numerical **subscript**.

Rule 2 A subscript of one (1) is not written.

Rule 3 Subscripts are **not** reduced to lowest whole numbers.

Note: Formulas and names are written in the same order.

```
Examples: bromine trifluoride is BrF<sub>3</sub>
dichlorine heptoxide is Cl<sub>2</sub>O<sub>7</sub>
```

You should be able to write formulas for these compounds:

- a. nitrogen trifluoride
- b. carbon tetrachloride
- c. oxygen difluoride
- d. tellurium trioxide
- e. tetraarsenic tetraselenide
- f. chlorine monofluoride
- g. propane
- h. trisulfur dibromide

Answers are on the other side.

- i. tetraphosphorus decoxide
- j. iodine heptafluoride
- k. sulfur hexafluoride
- 1. tetraphosphorus heptasulfide
- m. diboron trioxide
- n. phosphorus pentachloride
- o. tetraiodine nonoxide
- p. disilicon hexaiodide